

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE				
QUALIFICATION CODE: 07BOSC LEVEL: 6				
COURSE CODE: APP601S	COURSE NAME: ANALYTICAL PRINCIPLES AND PRACTICE			
SESSION: JULY 2022	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER					
EXAMINER(S)	DR JULIEN LUSILAO				
MODERATOR:	DR MARIUS MUTORWA				

INSTRUCTIONS					
1. Answer	ALL the questions in the answer book provided.				
2. Write a	nd number your answers clearly.				
3. All writ	ten work MUST be done in blue or black ink.				

PERMISSIBLE MATERIALS

Non-programmable calculators

ATTACHMENTS

List of useful tables, formulas and constants

THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page and attachments)

Question 1: Multiple Choice Questions	[20]
1.1 A solution of which substance can best be used as both a titrant and its own indicator in an oxidation—reduction titration?	(2)
(A) I ₂ (B) NaOCI (C) K ₂ Cr ₂ O ₇ (D) KMnO ₄	
1.2 A chemical or physical principle that can be used to study an analyte is called	(2)
(A) A technique(B) A procedure(C) A protocol(D) A method	
1.3 What is the number of O_2 molecules in the 2.5 g of O_2 inhaled by the average person in one minute?	(2)
(A) 1.9×10^{22} (B) 3.8×10^{22} (C) 4.7×10^{22} (D) 9.4×10^{22}	
1.4 How many millimoles of methane, CH ₄ , are present in 6.4 g of this gas?	(2)
(A) 0.40 (B) 4.0 (C) 40 (D) 4.0 x 10 ²	
1.5 A 1.50 mL sample of a sulphuric acid (H_2SO_4) solution from an automobile storage battery is titrated with 1.47 M sodium hydroxide (NaOH) solution to a phenolphthalein endpoint, requiring 23.70 mL. What is the molarity of the sulphuric acid solution?	(2)
(A) 23.2 M (B) 6.30 M (C) 0.181 M (D) 11.6 M	
1.6 Consider this equation $ _Sn^{2+}(aq) + _MnO_4^-(aq) + _H^+(aq) \leftrightarrow _Sn^{4+}(aq) + _Mn^{2+}(aq) + _H_2O(I) $ When is balanced correctly, what is the ratio, Sn^{2+}/MnO_4^- ?	(2)

	(A) 1/1 (B) 1/2 (C) 2/1 (D) 5/2	
1.7	Sodium nitrate, heated in the presence of an excess of hydrogen, forms water according to the two-step process $2NaNO_3 \rightarrow 2NaNO_2 + O_2 \\ 2H_2 + O_2 \rightarrow 2H_2O$	
	From the reactions above, how many grams of sodium nitrate are required to form 9 grams of water?	(2)
	(A) 21.3 (B) 42.5 (C) 69.0 (D) 85.0	
1.8	What is the molarity of the sulphate ion in a solution prepared by dissolving 17.1 g of aluminium sulphate, $Al_2(SO_4)_3$, in enough water to prepare 1.00 L of solution? Neglect any hydrolysis.	(2)
	(A) 1.67×10^{-2} M (B) 5.00×10^{-2} M (C) 1.50×10^{-1} M (D) 2.50×10^{-1} M	
1.9	For the reaction $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$, $\Delta H^o = -86$ kJ.	
	Under what temperatures is this reaction expected to be spontaneous?	(2)
	(A) No temperatures(B) Low temperatures only(C) High temperature only(D) All temperatures	
1.1	0 Consider the ionization of hypochlorous acid: $HOCl(aq) \leftrightarrow H^+(aq) + OCl^-(aq)$ has $K = 3.0 \times 10^{-8}$ at 25°C. What is K for the reaction: $OCl^-(aq) + H_2O(l) \leftrightarrow HOCl(aq) + OH^-(aq)$?	(2)
	(A) 3.0×10^{-8} (B) 3.0×10^{6} (C) 3.3×10^{7} (D) 3.3×10^{-7}	

Question 2

2.1 A group of scientists used radioactive isotopes to date sediments from lakes and estuaries. To verify this method, they analysed a ²⁰⁸Po standard known to have an activity of 77.5 decays/min and obtained the following results.

[15]

(6)

(4)

77.09	75.37	72.42	76.84	77.84	76.69
78.03	74.96	77.54	76.09	81.12	75.75

Determine whether there is a significant difference between the mean and the expected value at a = 0.05.

2.2 Two analytical chemists have reported a method for monitoring the concentration of SO_2 in air. They compared their method to the standard method by analysing urban air samples <u>collected from a single location</u>. Samples were collected by drawing air through a collection solution for 6 min. Shown here is a summary of their results with SO_2 concentrations reported in mL/m^3 .

standard	21.62	22.20	24.27	23.54
method:	24.25	23.09	21.02	
new	21.54	20.51	22.31	21.30
method:	24.62	25.72	21.54	

Using an appropriate statistical test determine whether there is any significant difference between the standard method and the new method at a = 0.05. (9)

Question 3 [20]

- 3.1 A standard sample contains 10.0 mg/L of analyte and 15.0 mg/L of internal standard. Analysis of the sample gives signals for the analyte and internal standard of 0.155 and 0.233 (arbitrary units), respectively. Sufficient internal standard is added to a sample to make its concentration 15.0 mg/L. Analysis of the sample yields signals for the analyte and internal standard of 0.274 and 0.198, respectively. Report the analyte's concentration in the sample.
- 3.2 Serum containing Na⁺ gave a signal of 4.27 mV in an atomic emission analysis. Then 5.00 mL of 2.08 M NaCl were added to 95.0 mL of serum. This spiked serum gave a signal of 7.98 mV.
 - (a) What is the actual concentration of Na⁺ spiked in the sample? (2)
 - (b) Find the original concentration of Na⁺ in the serum. (3)

- (c) What calibration method has been used here? (2)
- (d) Briefly explain your choice of the calibration method. (2)
- (e) When would you recommend the use of this calibration method? (2)
- 3.3 To analyse Mn²⁺ in water, the sample was placed in 50.00 ml volumetric flasks, each containing 25.00 mL of the original sample and either of 0; 1.00; 2.00; 3.00; 4.00; or 5.00 mL of a 100.6 mg/L standard of Mn²⁺. All sample + standard solutions were diluted to 50.00 mL before reading the absorbance. The equation for the obtained calibration curve (shown in the figure below) is

 $S_{spike} = 0.0854 \times V_{std} + 0.1478$

- (a) Calculate the value for the x-intercept of the provided equation (beware the sign and unit of the value). (2)
- (b) Calculate the concentration of Mn^{2+} , C_A (beware the sign and unit). (3)

Question 4 [15]

4.1 Given the following unbalanced redox reaction:

 $CIO^{-}(aq) + I^{-}(aq) \leftrightarrow IO_{3}^{-}(aq) + CI^{-}(aq)$ Basic solution.

- (a) Write the balanced oxidation and reduction half reactions as well as the overall reaction. (3)
- (b) Calculate the state standard potential (E^0) of the reaction ($E^0_{CIO-/CI-}$ = + 0.890 V; $E^0_{IO3-/I-}$ = + 0.257 V) (1)
- (c) Calculate the equilibrium constant (K) of the reaction. (2)

4.2 Calculate the ionic strength of a 0.050 M NaCl solution.	(2)
4.3 Calculate the pH of the following acid–base buffer: $5.00 \mathrm{g}$ of $\mathrm{Na_2CO_3}$ and $5.00 \mathrm{g}$ of $\mathrm{NaHCO_3}$ diluted to $100 \mathrm{mL}$ (K_a (HCO ₃ -) = $4.69 \mathrm{x}$ 10^{-11}).	(4)
4.4 Write the charge balance and mass balance equations for a 0.10 M NaCl solution.	(3)
Question 5	[30]
5.1 50.00 ml of 0.1 M NaCN is titrated with 0.1 M HNO ₃ (K_a for NaCN = 6.20 x 10 ⁻¹⁰).	
(a) Write the balanced reaction of the titration (only show the ions participating in the reaction).	(1)
(b) Calculate the volume of HNO_3 added at the equivalence point.	(2)
(c) Calculate the pH after addition of the following volumes of the titrant	
(i) 0.0 mL of added HNO₃	(4)
(ii) 25.0 mL	(4)
(iii) 50.0 mL	(4)
5.2 50.0 mL of 0.0250 M KI was titrated with 0.0500 M AgNO ₃ (K_{sp} for AgI = 8.3 x 10 ⁻¹⁷).	
(a) Write the reaction involved in the titration (i.e. only the ions participating to the reaction).	(1)
(b) Calculate the value of equilibrium constant for the reaction in (a).	(2)
(c) Calculate the volume of titrant added at the equivalence point.	(1)
(d) Calculate pI for the following volume of added AgNO₃	
(i) 10.0 mL	(4)
(ii) 25.0 mL	(3)
(iii) 30.0 mL	(4)

TOTAL MARK = [100]

Data Sheet

Freedom

50%

90%

95%

$$t_{calculated} = \frac{\left| \overline{x} - \mu \right|}{s} \sqrt{N} \qquad t_{calculated} = \frac{\overline{d}}{s_d} \sqrt{n} \qquad t_{calculated} = \frac{\left| \overline{X}_a - \overline{X}_b \right|}{s_{pooled}} \times \sqrt{\frac{n_a \times n_b}{n_a + n_b}}$$

$$s_{pooled} = \sqrt{\frac{s_a^2 (N_a - 1) + s_b^2 (N_b - 1) + \dots}{N_a + N_b + \dots - N_{sets of data}}} \qquad G_{exp} = \frac{\left| \overline{X}_{our} - \overline{X} \right|}{s} \qquad Q_{calc} = \frac{gap}{range}$$

$$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}}$$
Confidence
$$degrees \qquad 5000 = 0000 = 0000 = 0000$$

99%

	-		·	
1	1.000	6.314	12.706	63.656
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.776	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
22	0.686	1.717	2.074	2.819
23	0.685	1.714	2.069	2.807
24	0.685	1.711	2.064	2.797
25	0.684	1.708	2.060	2.787
26	0.684	1.706	2.056	2.779
27	0.684	1.703	2.052	2.771
28	0.683	1.701	2.048	2.763
29	0.683	1.699	2.045	2.756
30	0.683	1.697	2.042	2.750
31	0.682	1.696	2.040	2.744
32	0.682	1.694	2.037	2.738
33	0.682	1.692	2.035	2.733
34	0.682	1.691	2.032	2.728
35	0.682	1.690	2.030	2.724

	Q_{crit} (Reject if $Q_{exp} > Q_{crit}$)						
N	90% Confidence						
3	0.941	0.970	0.994				
4	0.765	0.829	0.926				
5	0.642	0.710	0.821				
6	0.560	0.625	0.740				
7	0.507	0.568	0.680				
8	0.468	0.526	0.634				
9	0.437	0.493	0.598				
10	0.412	0.466	0.568				

N = number of observations

$$\frac{S_{\text{samp}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}} + C_{\text{scd}} \frac{V_{\text{std}}}{V_{\text{f}}}}$$

$$\frac{S_{\text{samp}}}{C_{\text{A}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{o}} + V_{\text{std}}} + C_{\text{std}} \frac{V_{\text{std}}}{V_{\text{o}} + V_{\text{std}}}}$$

F(0.05, onum, odenom) for a Two-Tailed F-Test													
σnum⇒	1	2	3	4	5	6	7	8	9	10	15	20	∞
σden∜													
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	984.9	993.1	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.43	39.45	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.25	14.17	13.90
4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.444	8.657	8.560	8.257
5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.428	6.329	6.015
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.269	5.168	4.894
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.568	4.467	4.142
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.259	4.101	3.999	3.670
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.769	3.667	3.333
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.522	3.419	3.080
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.644	3.588	3.526	3.330	3.226	2.883
12	6.544	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.177	3.073	2.725
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.053	2.948	2.596
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	2.949	2.844	2.487
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.862	2.756	2.395
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.788	2.681	2.316
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.723	2.616	2.247
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.667	2.559	2.187
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.617	2.509	2.133
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.573	2.464	2.085
∞	5.024	3.689	3.116	2.786	2.567	2.408	2.288	2.192	2.114	2.048	1.833	1.708	1.000

Physical Constants

See Bought Control (Bullion		
Gas constant	R	= 8.315 J K ⁻¹ mol ⁻¹
		= 8.315 kPa dm ³ K ⁻¹ mol ⁻¹
		= 8.315 Pa m ³ K ⁻¹ mol ⁻¹
		= 8.206 x 10 ⁻² L atm K ⁻¹ mol ⁻¹
Boltzmann constant	k	= 1.381 x 10 ⁻²³ J K ⁻¹
Planck constant	h	$= 6.626 \times 10^{-34} \text{ J K}^{-1}$
Faraday constant	F	= 9.649 x 10 ⁴ C mol ⁻¹
Avogadro constant	L or N_A	= 6.022 x 10 ²³ mol ⁻¹
Speed of light in vacuum	С	= 2.998 x 10 ⁸ m s ⁻¹
Mole volume of an ideal gas	V_m	= 22.41 L mol ⁻¹ (at 1 atm and 273.15 K)
= 22.71 L mol ⁻¹ (at 1 bar and 2	73.15 K)	
Elementary charge	е	= 1.602 x 10 ⁻¹⁹ C
Rest mass of electron	m_e	$= 9.109 \times 10^{-31} \mathrm{kg}$
Rest mass of proton	m_p	= 1.673 x 10 ⁻²⁷ kg
Rest mass of neutron	m_n	= 1.675 x 10 ⁻²⁷ kg
Permitivity of vacuum	€0	= $8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{J}^{-1} \mathrm{m}^{-1} \mathrm{(or F m}^{-1)}$
Gravitational acceleration	g	$= 9.807 \text{ m s}^{-2}$
Conversion Factors		
1 W		= 1 J s ⁻¹
1 J		= 0.2390 cal = 1 N m = 1 V C
		$= 1 Pa m^3 = 1 kg m^2 s^{-2}$
1 cal		= 4.184 J
1 eV		= 1.602 x 10 ⁻¹⁹ J
1 L atm		= 101.3 J
1 atm		= $1.013 \times 10^5 \text{ N m}^{-2} = 1.013 \times 10^5 \text{ Pa} =$
		760 mmHg
1 bar		= 1 x 10 ⁵ Pa
1 L		$= 10^{-3} \mathrm{m}^3 = 1 \mathrm{dm}^3$
1 Angstrom		$= 1 \times 10^{-10} \mathrm{m} = 0.1 \mathrm{nm} = 100 \mathrm{pm}$
1 micron (μ)		$= 10^{-6} \text{m} = 1 \mu \text{m}$
1 Poise		$= 0.1 \text{ Pa s} = 0.1 \text{ N sm}^{-2}$
1 ppm		= 1 μ g g ⁻¹ = 1 mg kg ⁻¹
	= 1 mg	g L ⁻¹ (dilute aqueous solutions only)

He 40026 10 Ne 20.779	Ar 39.948 36 Kr 83.80	84 ×	86 Rn (222)			
9 F 18.938 17	CI 35.453 35 Br 79.904	53 I 12690	85 At (210)	Γ	Lu 174.97	(260)
8 O 15.999	S 32.064 34 Se 78.96	S2 T	Po (209)	71	Vb	$ \begin{array}{c c} N\mathbf{o} \\ \hline N^2 \\ \hline (259) \end{array} $
7 N 14.007	30.974 33 AS 74.922	Sb 121.75	83 Bi 208.98	70	[m 168.93	//d (258)
9 4	Si 28.086 32 Ge 72.61	SD Sn 118.71	82 Pb 207.2	69	E r 167.26	(m)
5 B 10.811	Al 26.982 31 Ga 69.723	49 In	81 TI 204.38	89	Ho 164.93	Es 100 1
	Zn 65.39	Cd 11241	Hg 200.59	19	Dy 162.50	Cf (251)
보	30 C u 63.546	Ag 107.87	Au 196.97	99	Tb	Bk 98 247
Atomic Weight	N 5869	Pd 106.42	Pt 195.08	3	Gd	C m
50	Co 58933	46 102.91	Ir	64	Eu 151.97	$\begin{vmatrix} \mathbf{A}\mathbf{m} \\ (234) \end{vmatrix}$
7	Fe 55.847	Ru 101.07	Os 190.2	8	Sm 150.36	Pu (244)
Atomic Number	25 26 Nm 54.938	Tc (98)	Re 186.2	62	Pm 146.92	Np 237.05
Atom	Cr 51.996	Mo 95.94	W 183.85	19	Nd 144.24	U 23803
	50.942	N b 92.906	Ta <i>180.95</i>	09	Pr 140.91	Pa 231.04
	Ti 47.88	Zr 91.224	Hf 73	8	Ce 140.12	Th 322.04
	Sc 44.956	Y 88.906	La 13891	Ac 227.03		06
Be 9.0122	$ \frac{\mathbf{Mg}}{24.305} $ $ \mathbf{Ca} $ $ \frac{\mathbf{Ca}}{40.078} $	Sr 87.62	33	Ka 22603		
4 4 4 1 1 2 1 1 2 1	Na Na No	Rb S S 47	88 88 88 B	(223) K		
	6	37	8 8			