חAmIBIA UTIVERSITY OF SCIEПCE AПD TECHחOLOGY
 \section*{FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES}
 DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: O7BOSC	LEVEL: 6
COURSE CODE: APP601S	COURSE NAME: ANALYTICAL PRINCIPLES AND
PRACTICE	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR JULIEN LUSILAO
MODERATOR:	DR MARIUS MUTORWA

INSTRUCTIONS

1. Answer ALL the questions in the answer book provided.
2. Write and number your answers clearly.
3. All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIALS

Non-programmable calculators
ATTACHMENTS
List of useful tables, formulas and constants
THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page and attachments)

Question 1: Multiple Choice Questions

1.1 A solution of which substance can best be used as both a titrant and its own indicator in an oxidation-reduction titration?
(A) I_{2}
(B) NaOCl
(C) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(D) KMnO_{4}
1.2 A chemical or physical principle that can be used to study an analyte is called
(A) A technique
(B) A procedure
(C) A protocol
(D) A method
1.3 What is the number of O_{2} molecules in the 2.5 g of O_{2} inhaled by the average person in one minute?
(A) 1.9×10^{22}
(B) 3.8×10^{22}
(C) 4.7×10^{22}
(D) 9.4×10^{22}
1.4 How many millimoles of methane, CH_{4}, are present in 6.4 g of this gas?
(A) 0.40
(B) 4.0
(C) 40
(D) 4.0×10^{2}
1.5 A 1.50 mL sample of a sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution from an automobile storage battery is titrated with 1.47 M sodium hydroxide (NaOH) solution to a phenolphthalein endpoint, requiring 23.70 mL . What is the molarity of the sulphuric acid solution?
(A) 23.2 M
(B) 6.30 M
(C) 0.181 M
(D) 11.6 M
1.6 Consider this equation

$$
\begin{equation*}
\ldots \mathrm{Sn}^{2+}(\mathrm{aq})+\ldots \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\ldots \mathrm{H}^{+}(\mathrm{aq}) \leftrightarrow \ldots \mathrm{Sn}^{4+}(\mathrm{aq})+\ldots \mathrm{Mn}^{2+}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{2}
\end{equation*}
$$ When is balanced correctly, what is the ratio, $\mathrm{Sn}^{2+} / \mathrm{MnO}_{4}{ }^{-}$?

(A) $1 / 1$
(B) $1 / 2$
(C) $2 / 1$
(D) $5 / 2$
1.7 Sodium nitrate, heated in the presence of an excess of hydrogen, forms water according to the two-step process

$$
\begin{gathered}
2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

From the reactions above, how many grams of sodium nitrate are required to form 9 grams of water?
(A) 21.3
(B) 42.5
(C) 69.0
(D) 85.0
1.8 What is the molarity of the sulphate ion in a solution prepared by dissolving 17.1 g of aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, in enough water to prepare 1.00 L of solution? Neglect any hydrolysis.
(A) $1.67 \times 10^{-2} \mathrm{M}$
(B) $5.00 \times 10^{-2} \mathrm{M}$
(C) $1.50 \times 10^{-1} \mathrm{M}$
(D) $2.50 \times 10^{-1} \mathrm{M}$
1.9 For the reaction

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=-86 \mathrm{~kJ} .
$$

Under what temperatures is this reaction expected to be spontaneous?
(A) No temperatures
(B) Low temperatures only
(C) High temperature only
(D) All temperatures
1.10 Consider the ionization of hypochlorous acid: $\mathrm{HOCl}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq})$
has $K=3.0 \times 10^{-8}$ at $25^{\circ} \mathrm{C}$.
What is K for the reaction: $\mathrm{OCl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{HOCl}_{(a q)}+\mathrm{OH}^{-}(a q)$?
(A) 3.0×10^{-8}
(B) 3.0×10^{6}
(C) 3.3×10^{7}
(D) 3.3×10^{-7}

Question 2

2.1 A group of scientists used radioactive isotopes to date sediments from lakes and estuaries. To verify this method, they analysed a ${ }^{208}$ Po standard known to have an activity of 77.5 decays $/ \mathrm{min}$ and obtained the following results.

77.09	75.37	72.42	76.84	77.84	76.69
78.03	74.96	77.54	76.09	81.12	75.75

Determine whether there is a significant difference between the mean and the expected value at $a=0.05$.
2.2 Two analytical chemists have reported a method for monitoring the concentration of SO_{2} in air. They compared their method to the standard method by analysing urban air samples collected from a single location. Samples were collected by drawing air through a collection solution for 6 min . Shown here is a summary of their results with SO_{2} concentrations reported in $\mathrm{mL} / \mathrm{m}^{3}$.

standard	21.62	22.20	24.27	23.54
method:	24.25	23.09	21.02	
new	21.54	20.51	22.31	21.30
method:	24.62	25.72	21.54	

Using an appropriate statistical test determine whether there is any significant difference between the standard method and the new method at $a=0.05$.

Question 3

3.1 A standard sample contains $10.0 \mathrm{mg} / \mathrm{L}$ of analyte and $15.0 \mathrm{mg} / \mathrm{L}$ of internal standard. Analysis of the sample gives signals for the analyte and internal standard of 0.155 and 0.233 (arbitrary units), respectively. Sufficient internal standard is added to a sample to make its concentration $15.0 \mathrm{mg} / \mathrm{L}$. Analysis of the sample yields signals for the analyte and internal standard of 0.274 and 0.198 , respectively. Report the analyte's concentration in the sample.
3.2 Serum containing Na^{+}gave a signal of 4.27 mV in an atomic emission analysis. Then 5.00 mL of 2.08 M NaCl were added to 95.0 mL of serum. This spiked serum gave a signal of 7.98 mV .
(a) What is the actual concentration of Na^{+}spiked in the sample?
(b) Find the original concentration of Na^{+}in the serum.
(c) What calibration method has been used here?
(d) Briefly explain your choice of the calibration method.
(e) When would you recommend the use of this calibration method?
3.3 To analyse Mn^{2+} in water, the sample was placed in 50.00 ml volumetric flasks, each containing 25.00 mL of the original sample and either of $0 ; 1.00 ; 2.00 ; 3.00 ; 4.00$; or 5.00 mL of a $100.6 \mathrm{mg} / \mathrm{L}$ standard of Mn^{2+}. All sample + standard solutions were diluted to 50.00 mL before reading the absorbance. The equation for the obtained calibration curve (shown in the figure below) is

$$
S_{\text {spike }}=0.0854 \times V_{\text {std }}+0.1478
$$

(a) Calculate the value for the x-intercept of the provided equation (beware the sign and unit of the value).
(b) Calculate the concentration of Mn^{2+}, C_{A} (beware the sign and unit).

Question 4

4.1 Given the following unbalanced redox reaction:

$$
\mathrm{ClO}^{-}(a q)+\mathrm{I}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+\mathrm{Cr}(\mathrm{aq}) \text { Basic solution. }
$$

(a) Write the balanced oxidation and reduction half reactions as well as the overall reaction.
(b) Calculate the state standard potential $\left(E^{0}\right)$ of the reaction
(E^{0} clo-/c1 $=+0.890 \mathrm{~V} ; E_{103-/ 1-}^{0}=+0.257 \mathrm{~V}$)
(c) Calculate the equilibrium constant (K) of the reaction.
4.3 Calculate the pH of the following acid-base buffer: 5.00 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 5.00 g of NaHCO_{3} diluted to $100 \mathrm{~mL}\left(K_{a}\left(\mathrm{HCO}_{3}{ }^{-}\right)=4.69 \times 10^{-11}\right)$.
4.4 Write the charge balance and mass balance equations for a 0.10 M NaCl solution.

Question 5

5.150 .00 ml of 0.1 M NaCN is titrated with $0.1 \mathrm{M} \mathrm{HNO}_{3}\left(K_{a}\right.$ for $\left.\mathrm{NaCN}=6.20 \times 10^{-10}\right)$.
(a) Write the balanced reaction of the titration (only show the ions participating in the reaction).
(b) Calculate the volume of HNO_{3} added at the equivalence point.
(c) Calculate the pH after addition of the following volumes of the titrant
(i) 0.0 mL of added HNO_{3}
(ii) 25.0 mL
(iii) 50.0 mL
5.250 .0 mL of $0.0250 \mathrm{M} \mathrm{KI}^{2}$ was titrated with $0.0500 \mathrm{M} \mathrm{AgNO}_{3}\left(K_{\text {sp }}\right.$ for $\left.\mathrm{AgI}=8.3 \times 10^{-17}\right)$.
(a) Write the reaction involved in the titration (i.e. only the ions participating to the reaction).
(b) Calculate the value of equilibrium constant for the reaction in (a).
(c) Calculate the volume of titrant added at the equivalence point.
(d) Calculate pl for the following volume of added AgNO_{3}
(i) 10.0 mL
(ii) 25.0 mL
(iii) 30.0 mL

Data Sheet

$t_{\text {calculleted }}=\frac{\|\bar{x}-\mu\|}{s} \sqrt{N} \quad t_{\text {calculated }}=\frac{\bar{d}}{s_{d}} \sqrt{n}$
$s_{\text {pooled }}=\sqrt{\frac{\mathrm{s}_{\mathrm{a}}^{2}\left(N_{\mathrm{a}}-1\right)+\mathrm{s}_{\mathrm{b}}^{2}\left(N_{\mathrm{b}}-1\right)+\ldots \ldots . .}{N_{\mathrm{a}}+N_{\mathrm{b}}+\ldots . .-N_{\text {sets of data }}}} \quad t_{\text {calculated }}=\frac{\left\|\bar{x}_{\mathrm{a}}-\bar{x}_{\mathrm{b}}\right\|}{s_{\text {pooled }}} \times \sqrt{\frac{\mathrm{n}_{\mathrm{a}} \times \mathrm{n}_{\mathrm{b}}}{\mathrm{n}_{\mathrm{a}}+\mathrm{n}_{\mathrm{b}}}}$
$\boldsymbol{\mu}=\overline{\mathrm{x}} \pm \frac{\mathrm{ts}}{\sqrt{\mathrm{n}}}$
Confidence
$\begin{array}{l}\text { degress } \\ \text { Freedom }\end{array} \quad G_{\text {epp }}=\frac{\left\|X_{\text {our }}-\bar{X}\right\|}{s} \quad \mathrm{Q}_{\text {calc }}=\frac{\text { gap }}{\text { range }}$

1	1.000	6.314	12.706	63.656
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.776	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
22	0.686	1.717	2.074	2.819
23	0.685	1.714	2.069	2.807
24	0.685	1.711	2.064	2.797
25	0.684	1.708	2.060	2.787
26	0.684	1.706	2.056	2.779
27	0.684	1.703	2.052	2.771
28	0.683	1.701	2.048	2.763
29	0.683	1.699	2.045	2.756
30	0.683	1.697	2.042	2.750
31	0.682	1.696	2.040	2.744
32	0.682	1.694	2.037	2.738
33	0.682	1.692	2.035	2.733
34	0.682	1.691	2.032	2.728
35	0.682	1.690	2.030	2.724

	$Q_{\text {crit }}$ (Reject if $Q_{\text {exp }}>Q_{\text {crit }}$)		
N	90% Confidence	95% Confidence	99% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

$N=$ number of observations

F(0.05, onum, odenom) for a Two-Tailed F-Test													
onum \Rightarrow oden \downarrow	1	2	3	4	5	6	7	8	9	10	15	20	∞
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	984.9	993.1	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.43	39.45	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.25	14.17	13.90
4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.444	8.657	8.560	8.257
5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.428	6.329	6.015
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.269	5.168	4.894
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.568	4.467	4.142
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.259	4.101	3.999	3.670
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.769	3.667	3.333
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.522	3.419	3.080
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.644	3.588	3.526	3.330	3.226	2.883
12	6.544	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.177	3.073	2.725
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.053	2.948	2.596
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	2.949	2.844	2.487
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.862	2.756	2.395
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.788	2.681	2.316
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.723	2.616	2.247
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.667	2.559	2.187
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.617	2.509	2.133
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.573	2.464	2.085
∞	5.024	3.689	3.116	2.786	2.567	2.408	2.288	2.192	2.114	2.048	1.833	1.708	1.000

Physical Constants

Gas constant	R	$=8.315 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.315 \mathrm{kPa} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.315 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.206 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann constant	k	$=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Planck constant	h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~K}^{-1}$
Faraday constant	F	$=9.649 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L \operatorname{orNA}$	$=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Speed of light in vacuum	c	$=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Mole volume of an ideal gas	V_{m}	$=22.41 \mathrm{~L} \mathrm{~mol}^{-1}$ (at 1 atm and 273.15 K)
$=22.71 \mathrm{~L} \mathrm{~mol}^{-1}$ (at 1 bar and 273.15 K)		
Elementary charge	e	$=1.602 \times 10^{-19} \mathrm{C}$
Rest mass of electron	m_{e}	$=9.109 \times 10^{-31} \mathrm{~kg}$
Rest mass of proton	m_{p}	$=1.673 \times 10^{-27} \mathrm{~kg}$
Rest mass of neutron	m_{n}	$=1.675 \times 10^{-27} \mathrm{~kg}$
Permitivity of vacuum	ε_{0}	$=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}\left(\right.$ or $\mathrm{F} \mathrm{m}^{-1}$)
Gravitational acceleration	g	$=9.807 \mathrm{~m} \mathrm{~s}^{-2}$
Conversion Factors		
1 W		$=1 \mathrm{~J} \mathrm{~s}^{-1}$
1 J		$=0.2390 \mathrm{cal}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{VC}$
		$=1 \mathrm{~Pa} \mathrm{~m}^{3}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
1 cal		$=4.184 \mathrm{~J}$
1 eV		$=1.602 \times 10^{-19} \mathrm{~J}$
1 Latm		$=101.3 \mathrm{~J}$
1 atm		$\begin{aligned} = & 1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}=1.013 \times 10^{5} \mathrm{~Pa}= \\ & 760 \mathrm{mmHg} \end{aligned}$
1 bar		$=1 \times 10^{5} \mathrm{~Pa}$
1 L		$=10^{-3} \mathrm{~m}^{3}=1 \mathrm{dm}^{3}$
1 Angstrom		$=1 \times 10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}=100 \mathrm{pm}$
1 micron (μ)		$=10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}$
1 Poise		$=0.1 \mathrm{Pas}=0.1 \mathrm{~N} \mathrm{sm}^{-2}$
1 ppm		$=1 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}=1 \mathrm{mg} \mathrm{kg}^{-1}$
		L^{-1} (dilute aqueous solutions only)

Ce			Na	${ }^{16}$		${ }_{\text {Sm }}^{2}$	${ }_{\text {E }}^{3}$			Tb	${ }_{6}^{\text {be }}$ Dy	${ }^{6}$			${ }^{\text {Tm }}$	${ }^{\text {bo }}$		${ }^{1 \prime}$
Th			${ }_{2}$	N		${ }_{\text {Pu }}^{\text {ent }}$	A		$\mathrm{Cm}_{\text {coper }}$	${ }^{17}$	${ }^{18}{ }^{\text {cf }}$	${ }^{2} \mathrm{Es}$	F		Md			${ }_{\text {Lr }}$

