NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY ### FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES #### **DEPARTMENT OF NATURAL AND APPLIED SCIENCES** | QUALIFICATION: BACHELOR OF SCIENCE | | | | | |-------------------------------------|---|--|--|--| | QUALIFICATION CODE: 07BOSC LEVEL: 6 | | | | | | COURSE CODE: APP601S | COURSE NAME: ANALYTICAL PRINCIPLES AND PRACTICE | | | | | SESSION: JULY 2022 | PAPER: THEORY | | | | | DURATION: 3 HOURS | MARKS: 100 | | | | | SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER | | | | | | |---|-------------------|--|--|--|--| | EXAMINER(S) | DR JULIEN LUSILAO | | | | | | MODERATOR: | DR MARIUS MUTORWA | | | | | | INSTRUCTIONS | | | | | | |--------------|--|--|--|--|--| | 1. Answer | ALL the questions in the answer book provided. | | | | | | 2. Write a | nd number your answers clearly. | | | | | | 3. All writ | ten work MUST be done in blue or black ink. | | | | | #### **PERMISSIBLE MATERIALS** Non-programmable calculators #### **ATTACHMENTS** List of useful tables, formulas and constants THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page and attachments) | Question 1: Multiple Choice Questions | [20] | |---|------| | 1.1 A solution of which substance can best be used as both a titrant and its own indicator in an oxidation—reduction titration? | (2) | | (A) I ₂ (B) NaOCI (C) K ₂ Cr ₂ O ₇ (D) KMnO ₄ | | | 1.2 A chemical or physical principle that can be used to study an analyte is called | (2) | | (A) A technique(B) A procedure(C) A protocol(D) A method | | | 1.3 What is the number of O_2 molecules in the 2.5 g of O_2 inhaled by the average person in one minute? | (2) | | (A) 1.9×10^{22}
(B) 3.8×10^{22}
(C) 4.7×10^{22}
(D) 9.4×10^{22} | | | 1.4 How many millimoles of methane, CH ₄ , are present in 6.4 g of this gas? | (2) | | (A) 0.40
(B) 4.0
(C) 40
(D) 4.0 x 10 ² | | | 1.5 A 1.50 mL sample of a sulphuric acid (H_2SO_4) solution from an automobile storage battery is titrated with 1.47 M sodium hydroxide (NaOH) solution to a phenolphthalein endpoint, requiring 23.70 mL. What is the molarity of the sulphuric acid solution? | (2) | | (A) 23.2 M
(B) 6.30 M
(C) 0.181 M
(D) 11.6 M | | | 1.6 Consider this equation $ _Sn^{2+}(aq) + _MnO_4^-(aq) + _H^+(aq) \leftrightarrow _Sn^{4+}(aq) + _Mn^{2+}(aq) + _H_2O(I) $ When is balanced correctly, what is the ratio, Sn^{2+}/MnO_4^- ? | (2) | | | (A) 1/1
(B) 1/2
(C) 2/1
(D) 5/2 | | |-----|---|-----| | 1.7 | Sodium nitrate, heated in the presence of an excess of hydrogen, forms water according to the two-step process $2NaNO_3 \rightarrow 2NaNO_2 + O_2 \\ 2H_2 + O_2 \rightarrow 2H_2O$ | | | | From the reactions above, how many grams of sodium nitrate are required to form 9 grams of water? | (2) | | | (A) 21.3
(B) 42.5
(C) 69.0
(D) 85.0 | | | 1.8 | What is the molarity of the sulphate ion in a solution prepared by dissolving 17.1 g of aluminium sulphate, $Al_2(SO_4)_3$, in enough water to prepare 1.00 L of solution? Neglect any hydrolysis. | (2) | | | (A) 1.67×10^{-2} M
(B) 5.00×10^{-2} M
(C) 1.50×10^{-1} M
(D) 2.50×10^{-1} M | | | 1.9 | For the reaction $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$, $\Delta H^o = -86$ kJ. | | | | Under what temperatures is this reaction expected to be spontaneous? | (2) | | | (A) No temperatures(B) Low temperatures only(C) High temperature only(D) All temperatures | | | 1.1 | 0 Consider the ionization of hypochlorous acid: $HOCl(aq) \leftrightarrow H^+(aq) + OCl^-(aq)$ has $K = 3.0 \times 10^{-8}$ at 25°C. What is K for the reaction: $OCl^-(aq) + H_2O(l) \leftrightarrow HOCl(aq) + OH^-(aq)$? | (2) | | | (A) 3.0×10^{-8}
(B) 3.0×10^{6}
(C) 3.3×10^{7}
(D) 3.3×10^{-7} | | Question 2 2.1 A group of scientists used radioactive isotopes to date sediments from lakes and estuaries. To verify this method, they analysed a ²⁰⁸Po standard known to have an activity of 77.5 decays/min and obtained the following results. [15] (6) (4) | 77.09 | 75.37 | 72.42 | 76.84 | 77.84 | 76.69 | |-------|-------|-------|-------|-------|-------| | 78.03 | 74.96 | 77.54 | 76.09 | 81.12 | 75.75 | Determine whether there is a significant difference between the mean and the expected value at a = 0.05. 2.2 Two analytical chemists have reported a method for monitoring the concentration of SO_2 in air. They compared their method to the standard method by analysing urban air samples <u>collected from a single location</u>. Samples were collected by drawing air through a collection solution for 6 min. Shown here is a summary of their results with SO_2 concentrations reported in mL/m^3 . | standard | 21.62 | 22.20 | 24.27 | 23.54 | |----------|-------|-------|-------|-------| | method: | 24.25 | 23.09 | 21.02 | | | new | 21.54 | 20.51 | 22.31 | 21.30 | | method: | 24.62 | 25.72 | 21.54 | | Using an appropriate statistical test determine whether there is any significant difference between the standard method and the new method at a = 0.05. (9) Question 3 [20] - 3.1 A standard sample contains 10.0 mg/L of analyte and 15.0 mg/L of internal standard. Analysis of the sample gives signals for the analyte and internal standard of 0.155 and 0.233 (arbitrary units), respectively. Sufficient internal standard is added to a sample to make its concentration 15.0 mg/L. Analysis of the sample yields signals for the analyte and internal standard of 0.274 and 0.198, respectively. Report the analyte's concentration in the sample. - 3.2 Serum containing Na⁺ gave a signal of 4.27 mV in an atomic emission analysis. Then 5.00 mL of 2.08 M NaCl were added to 95.0 mL of serum. This spiked serum gave a signal of 7.98 mV. - (a) What is the actual concentration of Na⁺ spiked in the sample? (2) - (b) Find the original concentration of Na⁺ in the serum. (3) - (c) What calibration method has been used here? (2) - (d) Briefly explain your choice of the calibration method. (2) - (e) When would you recommend the use of this calibration method? (2) - 3.3 To analyse Mn²⁺ in water, the sample was placed in 50.00 ml volumetric flasks, each containing 25.00 mL of the original sample and either of 0; 1.00; 2.00; 3.00; 4.00; or 5.00 mL of a 100.6 mg/L standard of Mn²⁺. All sample + standard solutions were diluted to 50.00 mL before reading the absorbance. The equation for the obtained calibration curve (shown in the figure below) is $S_{spike} = 0.0854 \times V_{std} + 0.1478$ - (a) Calculate the value for the x-intercept of the provided equation (beware the sign and unit of the value). (2) - (b) Calculate the concentration of Mn^{2+} , C_A (beware the sign and unit). (3) Question 4 [15] 4.1 Given the following unbalanced redox reaction: $CIO^{-}(aq) + I^{-}(aq) \leftrightarrow IO_{3}^{-}(aq) + CI^{-}(aq)$ Basic solution. - (a) Write the balanced oxidation and reduction half reactions as well as the overall reaction. (3) - (b) Calculate the state standard potential (E^0) of the reaction ($E^0_{CIO-/CI-}$ = + 0.890 V; $E^0_{IO3-/I-}$ = + 0.257 V) (1) - (c) Calculate the equilibrium constant (K) of the reaction. (2) | 4.2 Calculate the ionic strength of a 0.050 M NaCl solution. | (2) | |--|------| | 4.3 Calculate the pH of the following acid–base buffer: $5.00 \mathrm{g}$ of $\mathrm{Na_2CO_3}$ and $5.00 \mathrm{g}$ of $\mathrm{NaHCO_3}$ diluted to $100 \mathrm{mL}$ (K_a (HCO ₃ -) = $4.69 \mathrm{x}$ 10^{-11}). | (4) | | 4.4 Write the charge balance and mass balance equations for a 0.10 M NaCl solution. | (3) | | | | | Question 5 | [30] | | 5.1 50.00 ml of 0.1 M NaCN is titrated with 0.1 M HNO ₃ (K_a for NaCN = 6.20 x 10 ⁻¹⁰). | | | (a) Write the balanced reaction of the titration (only show the ions participating in the reaction). | (1) | | (b) Calculate the volume of HNO_3 added at the equivalence point. | (2) | | (c) Calculate the pH after addition of the following volumes of the titrant | | | (i) 0.0 mL of added HNO₃ | (4) | | (ii) 25.0 mL | (4) | | (iii) 50.0 mL | (4) | | 5.2 50.0 mL of 0.0250 M KI was titrated with 0.0500 M AgNO ₃ (K_{sp} for AgI = 8.3 x 10 ⁻¹⁷). | | | (a) Write the reaction involved in the titration (i.e. only the ions participating to the reaction). | (1) | | (b) Calculate the value of equilibrium constant for the reaction in (a). | (2) | | (c) Calculate the volume of titrant added at the equivalence point. | (1) | | (d) Calculate pI for the following volume of added AgNO₃ | | | (i) 10.0 mL | (4) | | (ii) 25.0 mL | (3) | | (iii) 30.0 mL | (4) | | | | TOTAL MARK = [100] #### **Data Sheet** Freedom 50% 90% 95% $$t_{calculated} = \frac{\left| \overline{x} - \mu \right|}{s} \sqrt{N} \qquad t_{calculated} = \frac{\overline{d}}{s_d} \sqrt{n} \qquad t_{calculated} = \frac{\left| \overline{X}_a - \overline{X}_b \right|}{s_{pooled}} \times \sqrt{\frac{n_a \times n_b}{n_a + n_b}}$$ $$s_{pooled} = \sqrt{\frac{s_a^2 (N_a - 1) + s_b^2 (N_b - 1) + \dots}{N_a + N_b + \dots - N_{sets of data}}} \qquad G_{exp} = \frac{\left| \overline{X}_{our} - \overline{X} \right|}{s} \qquad Q_{calc} = \frac{gap}{range}$$ $$\mu = \overline{x} \pm \frac{ts}{\sqrt{n}}$$ Confidence $$degrees \qquad 5000 = 0000 = 0000 = 0000$$ 99% | | - | | · | | |----|-------|-------|--------|--------| | 1 | 1.000 | 6.314 | 12.706 | 63.656 | | 2 | 0.816 | 2.920 | 4.303 | 9.925 | | 3 | 0.765 | 2.353 | 3.182 | 5.841 | | 4 | 0.741 | 2.132 | 2.776 | 4.604 | | 5 | 0.727 | 2.015 | 2.571 | 4.032 | | 6 | 0.718 | 1.943 | 2.447 | 3.707 | | 7 | 0.711 | 1.895 | 2.365 | 3.499 | | 8 | 0.706 | 1.860 | 2.306 | 3.355 | | 9 | 0.703 | 1.833 | 2.262 | 3.250 | | 10 | 0.700 | 1.812 | 2.228 | 3.169 | | 11 | 0.697 | 1.796 | 2.201 | 3.106 | | 12 | 0.695 | 1.782 | 2.179 | 3.055 | | 13 | 0.694 | 1.771 | 2.160 | 3.012 | | 14 | 0.692 | 1.761 | 2.145 | 2.977 | | 15 | 0.691 | 1.753 | 2.131 | 2.947 | | 16 | 0.690 | 1.746 | 2.120 | 2.921 | | 17 | 0.689 | 1.740 | 2.110 | 2.898 | | 18 | 0.688 | 1.734 | 2.101 | 2.878 | | 19 | 0.688 | 1.729 | 2.093 | 2.861 | | 20 | 0.687 | 1.725 | 2.086 | 2.845 | | 21 | 0.686 | 1.721 | 2.080 | 2.831 | | 22 | 0.686 | 1.717 | 2.074 | 2.819 | | 23 | 0.685 | 1.714 | 2.069 | 2.807 | | 24 | 0.685 | 1.711 | 2.064 | 2.797 | | 25 | 0.684 | 1.708 | 2.060 | 2.787 | | 26 | 0.684 | 1.706 | 2.056 | 2.779 | | 27 | 0.684 | 1.703 | 2.052 | 2.771 | | 28 | 0.683 | 1.701 | 2.048 | 2.763 | | 29 | 0.683 | 1.699 | 2.045 | 2.756 | | 30 | 0.683 | 1.697 | 2.042 | 2.750 | | 31 | 0.682 | 1.696 | 2.040 | 2.744 | | 32 | 0.682 | 1.694 | 2.037 | 2.738 | | 33 | 0.682 | 1.692 | 2.035 | 2.733 | | 34 | 0.682 | 1.691 | 2.032 | 2.728 | | 35 | 0.682 | 1.690 | 2.030 | 2.724 | | | Q_{crit} (Reject if $Q_{exp} > Q_{crit}$) | | | | | | | |----|--|-------|-------|--|--|--|--| | N | 90%
Confidence | | | | | | | | 3 | 0.941 | 0.970 | 0.994 | | | | | | 4 | 0.765 | 0.829 | 0.926 | | | | | | 5 | 0.642 | 0.710 | 0.821 | | | | | | 6 | 0.560 | 0.625 | 0.740 | | | | | | 7 | 0.507 | 0.568 | 0.680 | | | | | | 8 | 0.468 | 0.526 | 0.634 | | | | | | 9 | 0.437 | 0.493 | 0.598 | | | | | | 10 | 0.412 | 0.466 | 0.568 | | | | | N = number of observations $$\frac{S_{\text{samp}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{f}}} + C_{\text{scd}} \frac{V_{\text{std}}}{V_{\text{f}}}}$$ $$\frac{S_{\text{samp}}}{C_{\text{A}}} = \frac{S_{\text{spike}}}{C_{\text{A}} \frac{V_{\text{o}}}{V_{\text{o}} + V_{\text{std}}} + C_{\text{std}} \frac{V_{\text{std}}}{V_{\text{o}} + V_{\text{std}}}}$$ | F(0.05, onum, odenom) for a Two-Tailed F-Test | | | | | | | | | | | | | | |---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | σnum⇒ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | ∞ | | σden∜ | | | | | | | | | | | | | | | 1 | 647.8 | 799.5 | 864.2 | 899.6 | 921.8 | 937.1 | 948.2 | 956.7 | 963.3 | 968.6 | 984.9 | 993.1 | 1018 | | 2 | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.37 | 39.39 | 39.40 | 39.43 | 39.45 | 39.50 | | 3 | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42 | 14.25 | 14.17 | 13.90 | | 4 | 12.22 | 10.65 | 9.979 | 9.605 | 9.364 | 9.197 | 9.074 | 8.980 | 8.905 | 8.444 | 8.657 | 8.560 | 8.257 | | 5 | 10.01 | 8.434 | 7.764 | 7.388 | 7.146 | 6.978 | 6.853 | 6.757 | 6.681 | 6.619 | 6.428 | 6.329 | 6.015 | | 6 | 8.813 | 7.260 | 6.599 | 6.227 | 5.988 | 5.820 | 5.695 | 5.600 | 5.523 | 5.461 | 5.269 | 5.168 | 4.894 | | 7 | 8.073 | 6.542 | 5.890 | 5.523 | 5.285 | 5.119 | 4.995 | 4.899 | 4.823 | 4.761 | 4.568 | 4.467 | 4.142 | | 8 | 7.571 | 6.059 | 5.416 | 5.053 | 4.817 | 4.652 | 4.529 | 4.433 | 4.357 | 4.259 | 4.101 | 3.999 | 3.670 | | 9 | 7.209 | 5.715 | 5.078 | 4.718 | 4.484 | 4.320 | 4.197 | 4.102 | 4.026 | 3.964 | 3.769 | 3.667 | 3.333 | | 10 | 6.937 | 5.456 | 4.826 | 4.468 | 4.236 | 4.072 | 3.950 | 3.855 | 3.779 | 3.717 | 3.522 | 3.419 | 3.080 | | 11 | 6.724 | 5.256 | 4.630 | 4.275 | 4.044 | 3.881 | 3.759 | 3.644 | 3.588 | 3.526 | 3.330 | 3.226 | 2.883 | | 12 | 6.544 | 5.096 | 4.474 | 4.121 | 3.891 | 3.728 | 3.607 | 3.512 | 3.436 | 3.374 | 3.177 | 3.073 | 2.725 | | 13 | 6.414 | 4.965 | 4.347 | 3.996 | 3.767 | 3.604 | 3.483 | 3.388 | 3.312 | 3.250 | 3.053 | 2.948 | 2.596 | | 14 | 6.298 | 4.857 | 4.242 | 3.892 | 3.663 | 3.501 | 3.380 | 3.285 | 3.209 | 3.147 | 2.949 | 2.844 | 2.487 | | 15 | 6.200 | 4.765 | 4.153 | 3.804 | 3.576 | 3.415 | 3.293 | 3.199 | 3.123 | 3.060 | 2.862 | 2.756 | 2.395 | | 16 | 6.115 | 4.687 | 4.077 | 3.729 | 3.502 | 3.341 | 3.219 | 3.125 | 3.049 | 2.986 | 2.788 | 2.681 | 2.316 | | 17 | 6.042 | 4.619 | 4.011 | 3.665 | 3.438 | 3.277 | 3.156 | 3.061 | 2.985 | 2.922 | 2.723 | 2.616 | 2.247 | | 18 | 5.978 | 4.560 | 3.954 | 3.608 | 3.382 | 3.221 | 3.100 | 3.005 | 2.929 | 2.866 | 2.667 | 2.559 | 2.187 | | 19 | 5.922 | 4.508 | 3.903 | 3.559 | 3.333 | 3.172 | 3.051 | 2.956 | 2.880 | 2.817 | 2.617 | 2.509 | 2.133 | | 20 | 5.871 | 4.461 | 3.859 | 3.515 | 3.289 | 3.128 | 3.007 | 2.913 | 2.837 | 2.774 | 2.573 | 2.464 | 2.085 | | ∞ | 5.024 | 3.689 | 3.116 | 2.786 | 2.567 | 2.408 | 2.288 | 2.192 | 2.114 | 2.048 | 1.833 | 1.708 | 1.000 | # **Physical Constants** | See Bought Control (Bullion | | | |--|--------------|---| | Gas constant | R | = 8.315 J K ⁻¹ mol ⁻¹ | | | | = 8.315 kPa dm ³ K ⁻¹ mol ⁻¹ | | | | = 8.315 Pa m ³ K ⁻¹ mol ⁻¹ | | | | = 8.206 x 10 ⁻² L atm K ⁻¹ mol ⁻¹ | | Boltzmann constant | k | = 1.381 x 10 ⁻²³ J K ⁻¹ | | Planck constant | h | $= 6.626 \times 10^{-34} \text{ J K}^{-1}$ | | Faraday constant | F | = 9.649 x 10 ⁴ C mol ⁻¹ | | Avogadro constant | L or N_A | = 6.022 x 10 ²³ mol ⁻¹ | | Speed of light in vacuum | С | = 2.998 x 10 ⁸ m s ⁻¹ | | Mole volume of an ideal gas | V_m | = 22.41 L mol ⁻¹ (at 1 atm and 273.15 K) | | = 22.71 L mol ⁻¹ (at 1 bar and 2 | 73.15 K) | | | Elementary charge | е | = 1.602 x 10 ⁻¹⁹ C | | Rest mass of electron | m_e | $= 9.109 \times 10^{-31} \mathrm{kg}$ | | Rest mass of proton | m_p | = 1.673 x 10 ⁻²⁷ kg | | Rest mass of neutron | m_n | = 1.675 x 10 ⁻²⁷ kg | | Permitivity of vacuum | €0 | = $8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{J}^{-1} \mathrm{m}^{-1} \mathrm{(or F m}^{-1)}$ | | Gravitational acceleration | g | $= 9.807 \text{ m s}^{-2}$ | | Conversion Factors | | | | 1 W | | = 1 J s ⁻¹ | | 1 J | | = 0.2390 cal = 1 N m = 1 V C | | | | $= 1 Pa m^3 = 1 kg m^2 s^{-2}$ | | 1 cal | | = 4.184 J | | 1 eV | | = 1.602 x 10 ⁻¹⁹ J | | 1 L atm | | = 101.3 J | | 1 atm | | = $1.013 \times 10^5 \text{ N m}^{-2} = 1.013 \times 10^5 \text{ Pa} =$ | | | | 760 mmHg | | 1 bar | | = 1 x 10 ⁵ Pa | | 1 L | | $= 10^{-3} \mathrm{m}^3 = 1 \mathrm{dm}^3$ | | 1 Angstrom | | $= 1 \times 10^{-10} \mathrm{m} = 0.1 \mathrm{nm} = 100 \mathrm{pm}$ | | 1 micron (μ) | | $= 10^{-6} \text{m} = 1 \mu \text{m}$ | | 1 Poise | | $= 0.1 \text{ Pa s} = 0.1 \text{ N sm}^{-2}$ | | 1 ppm | | = 1 μ g g ⁻¹ = 1 mg kg ⁻¹ | | | = 1 mg | g L ⁻¹ (dilute aqueous solutions only) | | | | | | He 40026 10 Ne 20.779 | Ar
39.948
36
Kr
83.80 | 84 × | 86
Rn
(222) | | | | |-------------------------|---|-------------------------|---------------------------|--------------------|----------------------|--| | 9
F
18.938
17 | CI
35.453
35
Br
79.904 | 53
I
12690 | 85
At
(210) | Γ | Lu 174.97 | (260) | | 8
O
15.999 | S
32.064
34
Se
78.96 | S2 T | Po (209) | 71 | Vb | $ \begin{array}{c c} N\mathbf{o} \\ \hline N^2 \\ \hline (259) \end{array} $ | | 7 N 14.007 | 30.974
33
AS
74.922 | Sb
121.75 | 83
Bi
208.98 | 70 | [m
168.93 | //d
(258) | | 9 4 | Si
28.086
32
Ge
72.61 | SD
Sn
118.71 | 82
Pb
207.2 | 69 | E r
167.26 | (m) | | 5
B
10.811 | Al 26.982 31 Ga 69.723 | 49
In | 81
TI
204.38 | 89 | Ho 164.93 | Es 100 1 | | | Zn 65.39 | Cd 11241 | Hg
200.59 | 19 | Dy 162.50 | Cf (251) | | 보 | 30
C u
63.546 | Ag 107.87 | Au 196.97 | 99 | Tb | Bk 98 247 | | Atomic Weight | N
5869 | Pd 106.42 | Pt 195.08 | 3 | Gd | C m | | 50 | Co
58933 | 46
102.91 | Ir | 64 | Eu 151.97 | $\begin{vmatrix} \mathbf{A}\mathbf{m} \\ (234) \end{vmatrix}$ | | 7 | Fe 55.847 | Ru
101.07 | Os
190.2 | 8 | Sm
150.36 | Pu (244) | | Atomic Number | 25 26 Nm 54.938 | Tc (98) | Re 186.2 | 62 | Pm 146.92 | Np
237.05 | | Atom | Cr
51.996 | Mo
95.94 | W 183.85 | 19 | Nd
144.24 | U
23803 | | | 50.942 | N b 92.906 | Ta <i>180.95</i> | 09 | Pr 140.91 | Pa 231.04 | | | Ti 47.88 | Zr 91.224 | Hf 73 | 8 | Ce 140.12 | Th 322.04 | | | Sc
44.956 | Y
88.906 | La 13891 | Ac 227.03 | | 06 | | Be 9.0122 | $ \frac{\mathbf{Mg}}{24.305} $ $ \mathbf{Ca} $ $ \frac{\mathbf{Ca}}{40.078} $ | Sr
87.62 | 33 | Ka
22603 | | | | 4 4 4 1 1 2 1 1 2 1 | Na Na No | Rb S S 47 | 88 88 88 B | (223) K | | | | | 6 | 37 | 8 8 | | | |